![]() |
![]() |
Designed and implemented a channel recommendation model to identify the most relevant YouTube channels for a brand based on campaign keywords and URL-derived context. The approach leveraged shared embedding spaces and novel clustering techniques to account for multimodal channel content, paired with a two-stage ranking system optimized for real-time querying at scale. This system reduced channel selection time by ~90%, reproduced expert decisions with >99% precision, and was patented.
2018-2021